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ABSTRACT

Segmentation and crustal accretion at oceanic transform fault systems are
investigated through a combination of geophysical data analysis and geodynamical and
geochemical modeling. Chapter 1 examines the effect of fault segmentation on the
maximum predicted earthquake magnitude of an oceanic transform fault system. Results
of thermal modeling suggest that fault segmentation by intra-transform spreading centers
(ITSC) drastically reduces the available brittle area of a transform fault and thus limits
the available earthquake rupture area. Coulomb stress models suggest that long ITSCs
will prohibit static stress interaction between segments of a transform system and further
limit the maximum possible magnitude of a given transform fault earthquake. In Chapter
2, gravity anomalies from a global set of oceanic transform fault systems are investigated.
Surprisingly, negative residual mantle Bouguer gravity anomalies are found within fast-
slipping transform fault domains. These gravity observations suggest a mass deficit
within fast-slipping transform faults, which may result from porosity variations, mantle
serpentinization, and/or crustal thickness variations. Two-dimensional forward modeling
and the correlation of the negative gravity anomalies to bathymetric highs indicate crustal
thickness excesses in these locations. Finally, in Chapter 3, mantle thermal and melting
models for a visco-plastic rheology are developed to investigate the process of mantle
melting and crustal accretion at ITSCs within segmented transform faults, and are applied
to the Siqueiros transform fault system. Models in which melt migrates into the
transform fault domain from a large region of the mantle best explain the gravity-derived
crustal thickness variations observed at the Siqueiros transform. Furthermore, a mantle
potential temperature of 1350°C and fractional crystallization at depths of 9 — 15.5 km
best explain the major element composition variation observed at the Siqueiros transform.
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INTRODUCTION

The global mid-ocean ridges are segmented by more than 120 transform fault
systems. These transform fault systems are critical for accommodating the geometry of
the ridge system as well as crustal accretion. The primary focus of this Ph.D. thesis is
the investigation of oceanic transform faults using a multidisciplinary approach. Chapter
I explores the seismicity of oceanic transform faults and examines the relationship
between fault segmentation and earthquake rupture. Chapter 2 utilizes residual mantle
Bouguer gravity anomaly (RMBA) calculations, 3D thermal models, and 2D forward
models to investigate the structure of a global set of transform faults. Finally, in Chapter
3, I develop combined geodynamical and geochemical models to constrain melt generation
and extraction at segmented transform fault systems. Below, | present a brief description

of each of these studies and their primary conclusions.

In Chapter 1, I combine Coulomb static stress models with available geological and
seismicity data to illustrate the importance of fault segmentation in models of earthquake
interaction at oceanic transform faults. The 2D thermal models demonstrate that fault
segmentation decreases the maximum magnitude of earthquakes by decreasing the brittle
area thus limiting the fault rupture of the transform fault system [Gregg er al., 2006].
Coulomb static stress models are used to explore whether adjacent fault segments behave
independently of each other, and how their stress interaction depends on their offset
distance. 1 find that, if intra-transform spreading centers are sufficiently long, adjacent
transform fault segments will be decoupled and behave independently of each other. 1|
also demonstrate the likelihood of stress interaction between strike-slip earthquakes and
normal faults at nearby spreading centers. These findings are important for understanding

the seismic budget of oceanic transform faults.

In Chapter 2, I analyze 3D gravity anomalies for 19 oceanic transform fault
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systems globally. By evaluating transform faults from several mid-ocean ridge systems
using 3D gravity inversions, 3D thermal models, and 2D forward models, I show that
there is systematic variation in the gravity signature of oceanic transform faults as a
function of their slip rate [Gregg et al., 2007b]. The spreading-rate dependency of the
gravity anomalies is especially evident at fast-slipping transform faults where I find more
negative RMBA values in comparison to the adjacent ridge axes. All previous studies of
slow-spreading mid-ocean ridges have shown more positive RMBA values within the
transform fault domain instead, indicating crustal thinning at the end of ridge segments and
focused crustal accretion at ridge segment centers [Kuo and Forsyth, 1988; Lin et al.,
1990]. Based on 2D forward models and available geological data, I propose that the
negative RMBA values observed at fast-slipping transform faults indicate that fast-
slipping systems have excess magma supply and increasing crustal production within the
transform fault domain. These findings directly contradict the classic models of crustal
accretion at mid-ocean ridges and require further investigation to determine the source of

the negative RMBA at fast-slipping transform faults.

In the final chapter of my thesis, I look at the process of mantle melting and melt
extraction at fast-slipping transform faults in an effort to explain the findings of increased
crustal accretion at these systems [Gregg et al., 2007b]. 1 combine thermal models of
segmented ridge-transform-ridge systems with fractional melting [Kinzler and Grove,
1992b; a; 1993] and fractional crystallization models [Yang et al., 1996]. The melt
migration model of Sparks and Parmentier [1991] is used to investigate the source region
of intra-transform spreading centers and examine two end-member melt aggregation
models of wide vs. narrow melt pooling regions. I apply these models to the specific case
of Siqueiros transform fault on the East Pacific Rise where there has been extensive
geological and geophysical mapping [Fornari et al., 1989; Carbotte and Macdonald, 1992,
Gregg et al., 2007b], as well as sampling via dredge and Alvin dives [Perfit et al., 1996;

Hays et al., 2004]. Our findings suggest that in order to explain the estimated crustal
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thicknesses indicated by the RMBA calculated at Siqueiros, melt must be pooled from
large distances into the transform fault domain. Furthermore, we find that a mantle
potential temperature of 1350C and fractional crystallization at depths of 9-15.5 km best
fits the geochemical observations at the Siqueiros transform fault system [Perfit et al.,
1996; Hays, 2004]. These melt migration models provide us with first-order insights into

the geological processes that may be occurring at the Siqueiros transform fault.

FUTURE DIRECTIONS

The research contained in this thesis is a starting point for the development of
many exciting projects for the coming years. In the future, I plan to extend my
investigation to study several first-order geological processes.

Coulomb stress modeling is an invaluable tool for estimating static stress transfer
following an earthquake or diking episode and determining likely locations for subsequent
events [e.g., King et al., 1994]. As part of this thesis, I successfully used stress models to
illustrate earthquake interaction at oceanic transform faults and the stress interaction
between strike-slip earthquakes and normal faults at nearby spreading centers [Gregg et
al., 2006]. It has also been suggested that stress transfer due to tectonic events can
stimulate interactions between volcanoes and earthquakes. In particular, recent research
on Hawaii has illustrated striking correlations between dike intrusions and earthquake
occurrence at Mauna Loa [Walter and Amelung, 2004; 2006; Amelung et al., 2007;
McGovern, 2007]. These techniques can also be applied to understanding continental
rifting; specifically, what is the stress interaction between dike injection during rifting
change and subsequent faulting events? For example, temporal and spatial seismicity
patterns along the East African Rift system indicate that there is ongoing stress
interaction between adjacent rift segments via diking and faulting events [Aronovitz et al.,

2007]. Increasing our understanding of how earthquakes and volcanoes interact in settings
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such as Hawaii and Africa is also important for aiding our ability to assess future hazards,
which is a direction I plan to pursue.

The spreading rate dependence of mid-ocean ridge morphology is widely
observed. Typical slow-spreading ridges are characterized by axial valleys and large
topographic variations, whereas fast-spreading ridges are generally associated with axial
highs and smoother topography [Macdonald, 1983]. However, in many locations it
appears that magma supply may play an even greater role in controlling the ridge
morphology than spreading rate. This paradox remains one of the first-order problems in
understanding the dynamics of mid-ocean ridges. For example, the Cleft segment of the
Juan de Fuca Ridge north of the 350 km-long Blanco transform fault has the morphology
of a fast-spreading ridge and is thought to be magmatically robust, while the Gorda ridge
to the south of Blanco, which is also spreading at a rate of 5.8 cm/yr, exhibits an axial
valley typical of a slow-spreading ridge and is considered magmatically starved [Embley
and Wilson, 1992; Hooft and Detrick, 1995]. Other examples include two adjacent
segments at ~18°S on the fast-spreading East Pacific Rise separated by a small non-
transform discontinuity [Sinton et al., 2002] and adjacent segments at ~114°E along the
intermediate spreading South East Indian Ridge (SEIR), which are separated by a 100
km-long transform fault [Cochran and Sempere, 1997; Buck et al., 2005; Gregg et al.,
2007b]. Not only is the apparent decrease in magma budget visible in the morphology of
these ridge segments, it is also observed in seismic and gravity data [Hooft and Detrick,
1995] as well as in the major and trace element geochemistry of lavas from these settings
[Rubin and Sinton, 2007]. At present it is unclear why adjacent segments spreading at the
same rate are in such stark contrast to each other, and our current understanding of the
physics behind mid-ocean ridge spreading does not fully address this problem. Possible
explanations may include thermal effects due to ridge offsets, regional tectonics, mantle
flow variations, mantle buoyancy [Buck et al., 2005], and mantle source heterogeneities. 1

plan to explore this research direction in the future.
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In chapter 3 of this thesis I have developed techniques for coupling geodynamical
and geochemical models, which can be constrained by geochemical and geophysical data to
examine the driving forces governing the magma budget of a ridge segment and the
resultant ridge morphology and geochemistry. These models can be further developed by
accounting for the effect of fractional melting and crystallization on the trace element
composition of extruded lavas at mid-ocean ridges. As part of my thesis work, we have
made significant advancements in understanding geodynamical models by coupling them
with fractional melting [Kinzler and Grove, 1992a, b; 1993] and fractional crystallization
models [Yang et al., 1996]. Incorporation of trace elements into these models will further
strengthen their capabilities and provide another independent variable for comparison
with geochemical observations, a direction that I am interested in exploring in
collaboration with geochemist colleagues.

Hydrated oceanic lithosphere is an important component of the subduction zone
system. It is widely accepted that water plays a fundamental role in the processes of
mantle melting and, subsequently, arc volcanism in the subduction setting. However,
very little is known about the actual water budget available from hydration of the oceanic
lithosphere. Two popular models for oceanic lithosphere hydration include: 1) the
serpentinization of the upper lithosphere at oceanic transform faults and fracture zones;
and 2) hydration of the upper mantle to depths of 40 km at large-scale normal faults
flanking the outer rise (thought to be the result of the bending of the slab as it subducts)
[Hacker et al., 2003]. However, it is unclear whether these two mechanisms are viable
and if so, how much water is locked into hydrous phases within the down-going plate at
these locations. This is another direction for future exploration.

During my thesis work, I have become increasingly interested in the effects of
lithospheric hydration as a way to explain negative gravity anomalies found within fast-
slipping oceanic transform faults [Gregg et al., 2007b] as well as seismic moment deficits

observed at many oceanic transform faults [Boettcher and Jordan, 2004]. In the past
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couple of years we have developed several 3D thermal models for various transform fault
geometries and mantle rheologies [Bekn et al., 2007; Gregg et al., 2007a], as well as the
inclusion of hydrous phase stability fields to assess localized hydration [Roland et al.,
2007]. A powerful result of these modeling efforts is the ability to estimate water
budgets expected from oceanic transform faults of varying spreading rate and geometry.
The next step in these calculations is to look at hydration in the inactive fracture zones
and explore the dehydration of these sections of the oceanic lithosphere as they are
incorporated at subduction zones at settings such as the Chile Triple Junction or the

Blanco Fracture Zone.
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CHAPTER 1: Segmentation of transform systems on the East Pacific Rise:
Implications for earthquake processes at fast-slipping oceanic transform
faults

ABSTRACT

Seven of the eight transform systems along the equatorial East Pacific Rise from
12°N to 15°S have undergone extension due to reorientation of plate motions and have
been segmented into two or more strike-slip fault strands offset by intratransform
spreading centers (ITSCs). Earthquakes recorded along these transform systems both
teleseismically and hydroacoustically suggest that segmentation geometry plays an
important role in how slip is accommodated at oceanic transforms. Results of thermal
calculations suggest that the thickness of the brittle layer of a segmented transform fault
could be significantly reduced by the thermal effect of ITSCs. Consequently, the potential
rupture area, and thus maximum seismic moment, is decreased. Using Coulomb static
stress models, we illustrate that long ITSCs will prohibit static stress interaction between
transform segments and limit the maximum possible magnitude of earthquakes on a given
transform system. Furthermore, transform earthquakes may have the potential to trigger
seismicity on normal faults flanking ITSCs.

Published as P. M. Gregg, J. Lin, and D. K. Smith, Segmentation of transform systems on the East Pacific
Rise: Implications for earthquake processes at fast-slipping oceanic transform faults. Geology, v. 34, no. 4,
p. 289-292, 2006.
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INTRODUCTION

Segmented transform systems are composed of several fault strands offset by short
ridges or rifts referred to as intra-transform spreading centers (ITSCs) (Menard and
Atwater, 1969; Searle, 1983; Pockalny et al., 1997), where active seafloor spreading and
crustal accretion are occurring (Fornari et al., 1989; Hekinian et al., 1992; Perfit et al.,
1996). Along the equatorial East Pacific Rise between 15°S and 12°N (Fig. 1), the
Siqueiros, Quebrada, Discovery, Gofar, Yaquina, Wilkes, and Garrett transform systems
have all undergone transtension due to changes in plate motions, and each of these
transforms is segmented by at least one ITSC (Searle, 1983; Fornari et al., 1989;
Lonsdale, 1989; Goff et al., 1993; Pockalny et al., 1997). The Clipperton transform
system has undergone several periods of transpression (Pockalny, 1997), and is the only

unsegmented transform system along the equatorial East Pacific Rise.

The global deficiency of seismic moment release on oceanic transform systems has
led researchers to hypothesize that a significant portion of oceanic transform slip is
accommodated aseismically (e.g., Boettcher and Jordan, 2004). However, global
seismicity studies have yet to consider the prevalence of transform fault segmentation.
Dziak et al. (1991) observed that earthquake sizes generally correlate with the lengths of
individual fault segments at the Blanco transform fault. Our observations of earthquakes
recorded on East Pacific Rise transform faults indicate that segmentation is an important
factor influencing rupture of large earthquakes at oceanic transforms. While it has been
shown that segmentation and fault steps play an important role in controlling the
earthquake behavior of continental strike-slip faults (e.g., Harris and Day, 1993), the
influence of segmentation and ITSCs on earthquake processes at an oceanic transform

system has not been studied in detail.

In this paper, we use teleseismically and hydroacoustically recorded seismicity data
from the equatorial East Pacific Rise and Coulomb static stress models to explore the

effect of ITSCs on static stress interaction between transform fault segments. We
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Figure 1. Regional map of the equatorial EPR showing large transform and non-
transform offsets. Segmentation geometry is included based on previous geological
mapping of the transform systems (e.g., Fornari et al., 1989; Lonsdale, 1989). Inset:
Regional map showing location of the full array of NOAA Pacific Marine Environmental
Laboratory hydrophones.
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Figure 2. Comparison of estimated areas of brittle lithosphere using a one-dimensional,
steady-state lithosphere cooling model (McKenzie, 1969) for the Clipperton (B) and
Siqueiros (C) transforms. A: The 90 km Clipperton transform system (X—X") and the 150
km Siqueiros transform system (Y-Y’), which is broken into five major segments S1, S2,
S3, S4, and S5 separated by four ITSCs SA, SB, SC, and SD (Fornari et al.,1989). B:
Calculated area of brittle lithosphere for temperatures <600 8C (shaded region) for the
Clipperton transform. C: Comparison of the calculated areas of brittle lithosphere for the
Siqueiros transform for a model of unsegmented geometry (area above the dotted line)
versus a model consisting of five individual segments offset by steady-state ITSCs
(shaded area).
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investigate whether adjacent fault segments can behave independently of one another,

and how the interaction between segments depends on their offset distance.

TRANSFORM SEGMENTATION

Segmentation of the transtensional transform systems at the equatorial East Pacific
Rise has resulted in individual strike-slip fault strands with lengths of 18-89 km, with an
average of ~37 km. The ITSCs separating the fault strands have lengths of 5-20 km, with
an average length of ~11 km. Fresh lavas collected from the ITSCs within the Siqueiros
and Garrett transforms (Hekinian et al., 1992; Perfit et al., 1996) indicate that ITSCs are
magmatically active, implying that the regions beneath them are hotter, and thus the
lithospheric plate is thinner than the surrounding domains. To explore the effect of
segmentation on the transform fault thermal structure, we use a half-space steady-state
lithospheric cooling model (McKenzie, 1969; Abercrombie and Ekstrom, 2001). The
temperature within the crust and mantle, 7, is defined as 7' = Terfly(2x7) "], where T,, is
the mantle temperature at depth, assumed to be 1300°C; y is the depth; k is the thermal
diffusivity, assumed to be 1,026 m’s’'; and 7 is the age of the lithosphere obtained by

dividing distance from the ridge axis by half the spreading rate.

Figure 2 compares the calculated areas of brittle deformation, defined as regions with
calculated temperatures < 600°C, for the geometries of the Clipperton and Siqueiros
transform systems. The calculated area under the 600 °C isotherm for the Clipperton
transform fault is 326 km®, compared to 710 km* for a model of a single unsegmented
fault with the cumulative length of the Siqueiros transform system. When the actual
segmentation geometry of the Siqueiros transform system is considered, however, the

integrated area of the calculated brittle deformation region is decreased by ~60% to 277

Y

V4

km"®.

Seismic moment (M,), which reflects the energy released by an earthquake, 1s a
function of the rupture area of the fault. Specifically, M, = G x D x S, where G is the
shear modulus, estimated to be 27 GPa from seismic velocities (Canales et al., 2003), D

1s the average slip, and S is the estimated brittle area. The resulting moment magnitude is
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Mw = (2/3) x log(M,) -10.73. For a model of constant stress drop during pure strike-slip
earthquakes, M, = (1/2) x Ac x w x S, where Ao is the earthquake stress drop, and w is

the fault width, estimated from S divided by fault length (Stein and Wysession, 2003).

Curves in Figure 3 show the predicted earthquake magnitudes for <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>